
Topic 9

Deep Learning for Audio

Some figures are copied from the following books
• LWLS - Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, Thomas B. Schön, Machine Learning: A First Course for Engineers 

and Scientists, Cambridge University Press, 2022.

• GBC - Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning, MIT Press.

• Mitchell - Tom M. Mitchell, Machine Learning, McGraw-Hill Education, 1997.



Audio Classification Tasks

• Music genre, mood, 
artist, composer, 
instrument classification

• Auto tagging, i.e., 
labeling music with 
words

• Chord recognition

• Acoustic event detection

• Speech/speaker 
recognition

• General flowchart
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Features that we have studied

• Raw input: audio waveform or spectrogram

• Feature output:

– RMS, Zero Crossing Rate

– Spectral centroid, spread, skewness, kurtosis, flatness, irregularity, roll-
off, flux, etc.

– Harmonic features

– MFCC, LPC, PLP, etc.

• Hand-crafted / engineered / pre-defined

• Hard to decide what features to use for a task

• Question: can computers learn features directly from data?

ECE 477 - Computer Audition, Zhiyao Duan 2023 3



Feature / Representation Learning

• Learn a transformation 
from "raw" inputs to a 
representation that can 
be effectively exploited in 
a task

• Automatic / does not rely 
on human knowledge

• Target for a specific task
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Methods Viewed as Feature Learning

• Principal Component Analysis (PCA)

– Learns a linear transformation, where rows of 
𝑾 are the orthogonal directions of greatest 
variance in the training data

𝑓 𝒙 = 𝑾𝒙 + 𝒃

• Dictionary Learning (e.g., NMF)

– Learns a linear transformation, where the 
input, transformation matrix, and activation 
matrix (i.e., features), are all non-negative

𝒙 = 𝑾𝒉
(𝑿 = 𝑾𝑯)
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Are linear features good enough?

• Probably not…

• The world is complex and often highly nonlinear.
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Can you define a linear 
transformation on the 
images to discriminate “2”s 
from non-“2”s?

𝑓 𝒙 = 

𝑖

𝑤𝑖𝑥𝑖 + 𝑏

where 𝒙 is a vector of pixel 
values of an image.



Are these features highly nonlinear…

…to the waveform or spectrogram?

• RMS, ZCR

• Spectral centroid, spread, skewness, kurtosis, flatness, flux

• Harmonic features

• Cepstrum: ℱ−1 log ℱ 𝑥 𝑡 2 2

• MFCC

• LPC
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Can we learn highly non-linear features?

Deep neural networks!
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Biological Motivation

• Human brain: a densely interconnected network

– ~10^11 neurons

– Each neuron connects to ~10^4 other neurons

– Two states of neuron activity: excited vs. inhibited

– Neuron switching speed: ~1kHz

• CPU clock frequency: GHz 

– Yet many tasks (e.g., face recognition) can be completed within 0.1 s

• This suggests 

– Highly parallel processing

– Distributed representations 
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Biological Analogy

10



History of Neural Networks

• 1943 – first neural network computing model by McCulloch and Pitts

• 1958 – Perceptron by Rosenblatt

• 1960’s – a big wave

• 1969 – Minsky & Papert’s book “Perceptrons”

• 1970’s – “winter” of neural networks

• 1975 – Backpropagation algorithm by Werbos

• 1980’s – another big wave

• 1990’s – overtaken by SVM proposed in 1993 by Vapnik

• 2006 – a fast learning algorithm for training deep belief networks by Hinton

• 2010’s – another big wave

• 2018 – Turing Award to Hinton, Bengio & LeCun

• 2022 – ChatGPT!

• Present – continue to transform various domains
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Nonlinear Activation Functions

• Step function
𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑠𝑖𝑔𝑛(𝒘𝑇𝒙 + 𝑏)

– Note: previously we used {-1,1} for sign function for 
perceptron, which is equivalent

• Sigmoid function

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝜎 𝒘𝑇𝒙 + 𝑏 =
1

1 + 𝑒− 𝒘𝑇𝒙+𝑏

• Rectified Linear Unit (ReLU)
𝑜𝑢𝑡𝑝𝑢𝑡 = max 0, 𝒘𝑇𝒙 + 𝑏
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Limitations of 1-layer Nets

• Only express linearly separable 
cases

– For example, they are good as 
logic operators “AND”, “NOT”, 
and “OR”

• Cannot represent “XOR”, which 
is not linearly separable
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But, we can combine them!
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2-layer Nets
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Matrix Notation

𝑓 𝒙 = 𝜎 

𝑗

𝑤𝑗
(2)

 𝜎 

𝑖

𝑤𝑖𝑗
(1)

 𝑥𝑖 + 𝑏𝑗
1

+ 𝑏 2

𝑓 𝒙 = 𝜎 𝑾2
𝑇𝝈 𝑾1

𝑻𝒙 + 𝒃1 + 𝑏2

where

𝑾1 = 𝑤𝑖𝑗
1

𝑑×𝑙1

, 𝒃1 = 𝑏𝑗
1

𝑙1×1

𝑾2 = 𝑤𝑗𝑘
2

𝑙1×𝑙2

, 𝑏2 = 𝑏 2

• What does 𝑾1
𝑇𝒙 compute?

• Inner products between columns of 𝑾1 and 𝒙

• Columns of 𝑾1 are “receptors” or “filters” 

• 𝑾1
𝑇𝒙 are their responses to input

ECE 477 - Computer Audition, Zhiyao Duan 2023 17

𝑤𝑖𝑗
(1)

𝑥1

𝑥2

𝑓 𝒙ℎ1

ℎ2

𝑤𝑗
(2)

1

1

ℎ3

out

𝑏 2𝑏𝑗
1

Input Hidden layer Output layer



3-layer Nets
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Matrix Notation

𝑓 𝒙 = 𝜎 

𝑘

𝑤𝑘
3

𝜎 

𝑗

𝑤𝑗𝑘
2

 𝜎 

𝑖

𝑤𝑖𝑗
1

 𝑥𝑖 + 𝑏𝑗
1

+ 𝑏𝑘
2

+ 𝑏 3
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𝑻𝒙 + 𝒃1 + 𝒃2 + 𝑏3
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Richer Representations with More Layers

• 1-layer nets (e.g., perceptron) only model linear hyperplanes

• 2-layer nets can approximate any continuous function, given 
enough hidden nodes

• >=3-layer nets can do so with fewer nodes and weights

• Nonlinear activation is key!

– Multiple layers of linear activations is still linear!
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Example Application

• Two-layer MLP

– Input: 28*28=784-d vectors

– Hidden layer size: 200 nodes

– Output layer size: 10 nodes

– #parameters for hidden layer: 
784*200+200

– #parameters for output layer: 200*10+10

– #Total parameters = 159,010
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• One-layer MLP (i.e., logistic regression)

– Input: 28*28=784-d vectors

– Output layer size: 10 nodes

– #parameters: 784*10+10 = 7,850

(Fig. 6.5 in LWLS, from MNIST dataset)
70,000 grayscale images (28*28) from 10 classes



Properties of NNs

• Large capacity: able to learn complex relations between input and output

• Support various data formats: continuous, discrete, categorical (needs to be 
encoded into numeric)

• Robust to some level of noise in training data

• Inference (i.e., making predictions on test examples) is fast

• Data hungry

• Training is slow

• Lack of mathematical analysis and difficult to interpret
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How to learn the weights?

• Given training data - input and label pairs 𝒙 𝑖 , 𝑦 𝑖
𝑖=1

𝑁

• Update network weights to minimize the difference (error) 

between 𝑓 𝒙(𝑖)  and 𝑦(𝑖)

– Calculate derivative of error w.r.t. weights

– Gradient descent to update weights

– Backpropagation algorithm: recursive computation of these gradients

• See derivation on white board
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Backpropagation Recap

• Assume we use sigmoid activation and the squared error loss

– We can also use other activations, e.g., ReLU

– We can also use other losses, e.g., cross entropy

• Then the loss on the entire training set is

𝐸 𝜽 =
1

2𝑁


𝑖=1

𝑁

𝑦 𝑖 − ො𝑦 𝑖 2
=

1

2𝑁


𝑖=1

𝑁

𝑦 𝑖 − 𝑓(𝒙 𝑖 ; 𝜽)
2

where 𝜽 denotes network parameters, i.e., network weights

• We compute gradient ∇𝜽𝐸 𝜽  (called the true gradient, versus stochastic gradient computed 
on a subset of data), and then update 𝜽 along the negative gradient direction iteratively

• The computation of ∇𝜽𝐸 𝜽  is recursive, backward from the last layer to the first layer, 
leveraging the layer-wise structure of the network

• The computation also requires node outputs at each layer, which are computed in a forward 
pass
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Forward Pass In Matrix Notation

• Start from input 𝑿𝑁×𝑑 = 𝒙 1 , 𝒙 2 , ⋯ , 𝒙 𝑁 𝑇
 corresponding to all 𝑁 points

• Compute first hidden layer net input 𝒁1

𝒁1 𝑁×𝑙1
= 𝑿𝑾1 𝑁×𝑙1

+ 𝑟𝑒𝑝𝑚𝑎𝑡 𝒃1
𝑇

𝑁×𝑙1

• Compute first hidden layer output 𝑯1

𝑯1 𝑁×𝑙1
= 𝝈 𝒁1

• Compute second hidden layer net input 𝒁2

𝒁2 𝑁×𝑙2
= 𝑯1𝑾2 𝑁×𝑙2

+ 𝑟𝑒𝑝𝑚𝑎𝑡 𝒃2
𝑇

𝑁×𝑙2

• Compute second hidden layer output 𝑯2

𝑯2 𝑁×𝑙2
= 𝝈 𝒁2

• ……

• Compute final output ෝ𝒚, a vector corresponding to all 𝑁 points
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Backward Pass in Matrix Notation

• Mean squared error computed on all data: 𝐸 𝜽 =
1

2𝑁
σ𝑖=1

𝑁 𝑦 𝑖 − ො𝑦 𝑖 2
=

1

2𝑁
𝒚 − ෝ𝒚 𝑇 𝒚 − ෝ𝒚

• Compute gradients w.r.t. weights in the output layer (the 𝑀-th layer)
𝜕𝐸

𝜕ෝ𝒚
𝑁×1

=
1

𝑁
ෝ𝒚 − 𝒚

𝜎′ 𝒛𝑀 𝑁×1 = ෝ𝒚⨀ 1 − ෝ𝒚

𝜕𝐸

𝜕𝒘𝑀 𝑙𝑀−1×1

=
𝜕𝒛𝑀

𝜕𝒘𝑀 𝑙𝑚−1×𝑁

⋅
𝜕𝐸

𝜕ෝ𝒚
𝑁×1

⨀ 𝜎′ 𝒛𝑀 𝑁×1

𝜕𝐸

𝜕𝑏𝑀
=

𝜕𝒛𝑀

𝜕𝑏𝑀 1×𝑁

⋅
𝜕𝐸

𝜕ෝ𝒚
𝑁×1

⨀ 𝜎′ 𝒛𝑀 𝑁×1
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𝑯𝑀−1
𝑇
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Backward Pass in Matrix Notation

• Compute gradients w.r.t. weights in the (𝑚 − 1)-th layer recursively

𝜕𝐸

𝜕𝑯𝑚−1 𝑁×𝑙𝑚−1

=
𝜕𝐸

𝜕𝑯𝑚 𝑁×𝑙𝑚

⨀ 𝜎′ 𝒁𝑚 𝑁×𝑙𝑚
⋅ 𝑾𝑚

𝑇
𝑙𝑚×𝑙𝑚−1

𝜕𝐸

𝜕𝑾𝑚−1 𝑙𝑚−2×𝑙𝑚−1

= 𝑯𝑚−2
𝑇

𝑙𝑚−2×𝑁 ⋅
𝜕𝐸

𝜕𝑯𝑚−1 𝑁×𝑙𝑚−1

⨀ 𝜎′ 𝒁𝑚−1 𝑁×𝑙𝑚−1

𝜕𝐸

𝜕𝒃𝑚−1 𝑙𝑚−1×1

=
𝜕𝐸

𝜕𝑯𝑚−1 𝑁×𝑙𝑚−1

⨀ 𝜎′ 𝒁𝑚−1 𝑁×𝑙𝑚−1

𝑇

⋅ 𝟏𝑁×1
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Problems of BP for Deep Networks

• Vanishing gradient problem

– Gradients vanishes when they are propagated back to early 
layers, hence their weights are hard to adjust

– Sigmoid activation → ReLU activation

• Many local minima 

– Which will trap gradient decent methods

– In practice, local minima are pretty good
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MLP Summary

• (Artificial) neural networks are inspired by the biological neural networks

– Parallel processing + distributed representation

• Feedforward neural networks use a layer-wise structure

– Full connection between adjacent layers

– Linear mapping + nonlinear activation

• Representation power

– 1-layer NNs are just perceptron or logistic regression

– 2-layer NNs can represent (almost) any continuous function, with sufficient hidden nodes

– >=3-layer NNs can do so with much fewer nodes

• Gradient descent to update network weights using training data

• Backpropagation algorithm to recursively compute gradients

– Vanishing gradient issues for sigmoid activation 
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MLP → Convolutional Neural Networks (CNN)

• Fully connected between adjacent layers

– Many parameters → prone to overfitting

– Some connections may be unnecessary

– Not robust to shifts of input
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Full Connection → Sparse Connection

• Only keep local connections

– Assuming nearby inputs have stronger correlations
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(Fig. 9.2 in GBC)

Receptive field of a neuron

(Fig. 9.3 in GBC)



Receptive Field at a Deeper Layer

• With sparse connections, nodes at a deeper layer can still have a large 
receptive field, and global patterns could still be captured
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(Fig. 9.4 in GBC)



𝑤1

𝑤2

𝑤3

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

𝑧1 𝑧2 𝑧3 𝑧4 𝑧5

Independent Weights → Shared Weights

• Assuming neurons at different locations process their inputs in the same 
way, we can let them share weights
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(Adapted from Fig. 9.3 in GBC)



Much Fewer Parameters!

𝑧1

𝑧2

𝑧3
𝑧4

𝑧5

=

𝑤11 ⋯ 𝑤51

⋮ ⋮ ⋮
𝑤15 ⋯ 𝑤55

𝑥1

𝑥2

𝑥3
𝑥4

𝑥5

• 5*5+5 parameters (biases are omitted in figures)

𝑧1

𝑧2

𝑧3
𝑧4

𝑧5

=

𝑤2 𝑤3 0  0  0
𝑤1 𝑤2 𝑤3 0  0

0 𝑤1 𝑤2 𝑤3 0
 0  0  𝑤1 𝑤2 𝑤3

0  0  0  𝑤1 𝑤2

𝑥1

𝑥2

𝑥3
𝑥4

𝑥5

• 3+1 parameters

𝑧𝑛 = 

𝑚

𝑤𝑚𝑥𝑚+𝑛−2
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(Adapted from Fig. 9.3 in GBC)



This is basically convolution

• Continuous-time signals

𝑧 𝑡 = 𝑥 ∗ 𝑤 𝑡 = න 𝑥 𝜏 𝑤 𝑡 − 𝜏 𝑑𝜏 = න 𝑥 𝑡 − 𝜏 𝑤 𝜏 𝑑𝜏 = 𝑤 ∗ 𝑥 𝑡

• Discrete-time signals

𝑧 𝑛 = 𝑥 𝑛 ∗ 𝑤 𝑛 = 

𝑚

𝑥 𝑚 𝑤 𝑛 − 𝑚 = 

𝑚

𝑥 𝑛 − 𝑚 𝑤 𝑚 = 𝑤[𝑛] ∗ 𝑥[𝑛]

• Cross convolution: no flipping, but is the convolution referred to in deep learning

𝑧 𝑛 = 

𝑚

𝑥 𝑚 𝑤 𝑛 + 𝑚
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2D Convolution
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2D Convolution
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(Fig. 9.1 in GBC) 

Filter

Feature map



2D Convolution Example

• Vertical edge detection using a 1*2 kernel [-1, 1]

• (Cross-)convolving a gray-scale image with this kernel computes the intensity 
difference between two horizontally adjacent pixels

ECE 477 - Computer Audition, Zhiyao Duan 2023 38

(Fig. 9.6 in GBC)



Convolution with Strides

• Downsampling after convolution 
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Stride size = 2

(Fig. 9.12 in GBC) 



2D Convolution with Strides
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(Figure from LWLS)



Pooling

• Pooling is another way to reduce the size of feature maps

– Max pooling: taking the max → result is invariant to small shifts

– Average pooling: taking the average

• No trainable parameters
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(Figure from LWLS)



Nonlinear Activation

• As discussed before, convolution is a linear operation

• We need a nonlinear activation after convolution to build deep nets

• Rectified Linear Unit (ReLU) and Leaky ReLU is most used
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Multiple Channels

• Convolution with a single filter (kernel) detects only one pattern (e.g., vertical edges)

• Use multiple filters to detect more patterns

– Each filter results in one feature map

– Multiple filter result in multiple feature maps, stacked as channels 

– When input is 2D with multiple channels, each filter becomes a 3D tensor
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(Fig. 6.14 in LWLS)



Convolution Layer
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(Fig. 9.7 in GBC)



Typical Output Layer
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• After a stack of convolutional layers, a few fully connected layers often follow 
to give the output

– The last convolutional layer’s feature map is reshaped to a vector

• 𝑀-Class Classification: 

– Use 𝑀 output nodes

– Softmax activation (probability): ො𝑦𝑖 =
𝑒ℎ𝑖

σ𝑗=0
𝑀−1 𝑒

ℎ𝑗
, ∀𝑖 = 0, ⋯ , 𝑀 − 1

– Cross entropy loss: 𝐿𝐶𝐸 = − σ𝑖=1
𝑁 𝑦𝑖 log ො𝑦𝑖

Ground truth

(Figure from https://towardsdatascience.com/cross-entropy-loss-function-f38c4ec8643e) 

https://towardsdatascience.com/cross-entropy-loss-function-f38c4ec8643e


Full CNN Architecture

• 𝑀-class classification on single-channel 2D input
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(Fig. 6.14 in LWLS)



• Input: 28*28=784-d gray-scale (i.e., 1-channel) hand-written digits

Full CNN Architecture
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784*4=3136 784/4*8=1568 784/4/4*12=588(Example 6.3 in LWLS)



Network Training

• Define a loss function
– Classification: cross entropy for softmax output

– Regression: mean squared error

• Stochastic gradient descent
– Randomly picking training samples to form a mini-batch

– Compute gradient of loss function w.r.t. weights through backpropagation

– Update weights along negative gradient with some (adaptive) learning rate

• Different optimizers
– Adam: adaptive moment estimation – uses running averages on gradients and second order 

moments

– Adagrad: adaptive gradient – uses different learning rates at different iterations

– RMSprop: root mean square propagation – exponentially weighted average of squared gradient to 
adapt learning rate
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Backpropagation for CNN

• BP through nonlinear activation

– Same as before

• BP through pooling

– Average pooling: gradient is equally distributed to all inputs

– Max pooling: gradient is solely assigned to the max input
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(Figures from https://lanstonchu.wordpress.com/2018/09/01/convolutional-neural-network-cnn-backward-propagation-of-the-pooling-layers/) 

https://lanstonchu.wordpress.com/2018/09/01/convolutional-neural-network-cnn-backward-propagation-of-the-pooling-layers/


Backpropagation for CNN

• Convolution is a linear operation between the 
input tensor and a kernel, and it results in an 
output tensor

• BP through convolution to layer input

– Each element of the input tensor affects multiple 
channels of the output tensor through different filters

• BP through convolution to layer weights

– Each weight affects all elements of one output channel 
through all channels of previous layer’s output
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(Adapted from Fig. 6.14 in LWLS)



CNNs for Different Types of Input

Single-Channel Multi-Channel

1-D Audio waveforms Skeleton animation data: Each channel 
represents one angle of one joint

2-D Audio spectrograms; gray-scale images Color images: RGB channels

3-D Volumetric data, e.g., CT scans Color video data
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(Adapted from Table 9.1 in GBC)



1D CNN for Audio Generation

• WaveNet [van den Oord et al., 2016]

• Dilated causal convolution
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https://www.deepmind.com/blog/wavenet-a-generative-model-for-raw-audio

text-to-speech

free generation
(speech)

Free generation 
(piano music)



2D CNN for Image Classification

• AlexNet [Krizhevsky et al., 2012]
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Filter Visualization of AlexNet

• Learned filters of the 1st convolutional layer

– 96 filters with size of 11*11*3
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[Krizhevsky et al., 2012]



Transfer Learning with Pretrained Networks

• First layers (features extractors) learned from one task (e.g., natural image classification) 
can be useful for another relevant task (e.g., medical image classification)

• Use a pre-trained model (on big data tasks) to build a new model (for small data tasks)
– Remove last few layers (e.g., the last dense layer), which are usually task-specific

– Use the remaining layers to build a new network by adding a couple of layers for the new task

– Train new layers (or fine tune the entire network) on the new task
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VGG-16 Model



ImageNet

• 1.3 M images from 1000 classes
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CNN for Audio Applications

• Apply 1D convolution on audio samples (WaveNet)

• Audio → Magnitude spectrogram → Apply 2D convolution

Applications : 

• Classification/Identification: sound, genre, instrument, speaker, etc.

• Source Separation: mask prediction

• Generation: predict the next audio sample

Disadvantages: 

• In images, neighboring pixels belong to the same object, not the same for spectrograms 

• CNNs are applied in magnitude, and not phase

• CNNs cannot model long-term temporal information 
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CNN Summary

• Key properties of CNNs

– Sparse (local) connection

– Shared weights

– Equivariance to translation

• Important components

– Convolution

– Pooling: max pooling, average pooling

– Activation: ReLU

• Important concepts

– Filter, receptive field, channel, tensor

• Applications

– Classification, regression, generation

– 1D, 2D, 3D

• Think: what problems/data are not appropriate for CNN?
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MLP → Recurrent Neural Network (RNN)

• Model time series with 
MLP, e.g., predicting the 
next data point

– Limited memory

– Fixed window size L

– Number of weights 
increases with L quickly

– Predictions at different 
times are independent

• How to better model past 
information?
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(Figure from Box and Jenkins, Time Series Analysis: Forecasting and Control, 1976)



Make Network Recurrent

• Parameter sharing

– Different positions use the 
same network

• Add recurrent links

– Current computation 
affects future computation

– Carry past information to 
the future

• Compared with 1D 
convolution
– Both have weight sharing

– Convolution has limited 
receptive field

– Recurrency can carry 
information infinitely long (in 
theory)
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Unfold Recurrency
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(Fig. 10.2 in GBK)

Delay by 1 step

𝒉 𝑡  is affected all past input: 𝒙(1), ⋯ , 𝒙 𝑡



Different Types of Recurrency

• RNNs that produce an output 
at each time step and have 
recurrent connections 
between hidden units

• Take classification / labeling 
as example

• Forward propagation
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Net input to hidden

Nonlinear activation

Linear output

Softmax -> class prob.

Cross entropy loss:  𝐿 = − σ𝑡 log ෝ𝒚 𝑡
𝑦 𝑡

(Fig. 10.3 in GBK)

Ground-truth 
classes



Back Propagation Through Time (BPTT)

• Output (hence loss) at time t is affected 
by past inputs and hidden nodes 
through the recurrent links

• To perform gradient descent, gradients 
need to pass backwards through the 
recurrent links

• Each update of weights requires

– Forward computation of all hidden nodes 
and output nodes

– Backpropagation of gradients

– Both computations are sequential → 
cannot be parallelized → slow to train
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(Fig. 10.3 in GBK)



BPTT Sketch

● Same as regular backpropagation → 
repeatedly apply chain rule

● For Why, we propagate
along the vertical links

Easy to 
calculate

64
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BPTT Sketch

● Same as regular backpropagation → 
repeatedly apply chain rule

● For Whh and Wxh, we also propagate
along the horizontal (i.e., recurrent) links

It also 
depends 
on Whh 65

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2023



Different Types of Recurrency

• RNNs that produce an output at 
each time step and have recurrent 
connections only from the output 
at one time step to the hidden 
units at the next time step

• Carry less information from past, 
because

– Output nodes typically have a 
lower dimensionality than hidden 
nodes

– Output nodes are strongly 
influenced by ground-truth 𝑦 
during training
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(Fig. 10.4 in GBK)



Teacher Forcing

• Training can be parallelized by 
teaching forcing for RNNs that 
only have recurrent links from 
output to hidden

• It essentially only trains 
network to make 1-step 
predictions

• During inference, 𝑦 𝑡−1  is not 

available for predicting 𝑦 𝑡 , 

causing mismatch from training

– Scheduled sampling: mix 
teacher-forced inputs and free-
run inputs during training with 
a ratio that gradually decreases
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(Fig. 10.6 in GBK)



Bidirectional RNN

• RNNs introduced so far are causal, i.e., the 
output at the current time step is only affected 
by the current input and past inputs

• In some applications (e.g., filling a missing word 
in a sentence, speech recognition), output has 
dependencies on inputs from both sides

• Let’s use two RNNs, one for each direction

• Their hidden values work together to give output
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(Fig. 10.11 in GBK)



RNN with a Single Output

• Some tasks only require a single output from the input sequence

– E.g., phoneme classification, sound event recognition
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(Fig. 10.5 in GBK)



RNN with Context Conditioning

• Output a sequence from a 
conditioning vector

– E.g., laughter sound generation, 
conditioned on the type of laughter

– E.g., image captioning, conditioned on 
image

– E.g., emotional talking face generation, 
conditioned on emotion label

• This conditioning vector can be 
input to the network

– As extra input at each time step (right 
figure)

– As the initial state 𝒉 0

– Both
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(Fig. 10.9 in WBK)



Encoder-Decoder Sequence-to-Sequence RNNs

• Sometimes the input and output 
sequences are of different length

– E.g., machine translation from English to 
Chinese

– E.g., audio captioning

• Encoder is an RNN with a single output

• Decoder is an RNN with context 
conditioning
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(Fig. 10.12 in GBK)



Deep RNNs

• RNNs we introduced so far have only one hidden layer

• There are many ways to make them deeper, but a common way is to stack 
RNNs

ECE 477 - Computer Audition, Zhiyao Duan 2023 72



Vanishing & Exploding Gradients

• Recurrency applies the same function repeatedly, and will exponentially 
diminish or boost certain effects

• Look at linear recurrency as an example

𝒉 𝑡 = 𝑾𝒉 𝑡−1 = 𝑾𝑡𝒉 0

• Let 𝑾 have eigenvalue decomposition
𝑾 = 𝑸𝚲𝑸−1

• Then we have

𝒉 𝑡 = 𝑸𝚲t𝑸−1𝒉 0

• Eigenvalues are raised to the power of 𝑡!

– If 𝒉 0  is aligned with an eigenvector that is greater than 1, then explode

– If 𝒉 0  is aligned with an eigenvector that is smaller than 1, then vanish
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Vanishing & Exploding Gradients

• Vanishing gradients are very common for RNNs

• Exploding gradients also happen, and it damages the optimization very much
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Gradient Clipping

• Too big gradients 
will make too big 
updates of network 
parameters

• Clip the norm of 
gradients 𝒈 to 𝑣:
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(Fig. 10.17 in GBC)



Improving Long-Term Dependency Modeling

• Temporal dependencies in data can be very long

– E.g., music rhythmic structure is at the scale of seconds, where each second often 
contains 44100 samples (time domain) or ~100 frames (time-frequency domain)

• Influence of input vanishes exponentially over time steps

– In practice, after ten steps, influence is already negligible

• Several ways to improve long-term dependency

– Add skip connections through time: allows information to flow with fewer time steps

– Add linear self-connections to hidden units, called leaky units, similar to running average: 

𝜇 𝑡 ← 𝛼𝜇 𝑡−1 + 1 − 𝛼 𝑣 𝑡 . When 𝛼 is close to 1, it allows hidden units to remember 
information for a long time.

– Add gates to control information flow
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Gated Architectures - LSTM

● Cell state (leaky unit) is the internal memory
● Three information gates perform delete/write/read operations on memory

77
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Gated Architecture - GRU

• Gated Recurrent Unit (GRU)

– A single gate to simultaneously control 
the forgetting factor and the updating 
operation of the state unit

– Fewer parameters than LSTM

– Similar performance
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Update gate

Reset gate

Output

(Figure from https://en.wikipedia.org/wiki/Gated_recurrent_unit) 
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https://en.wikipedia.org/wiki/Gated_recurrent_unit


Application: Music Generation
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Benetatos, VanderStel, & Duan, BachDuet: A deep learning system for human-machine counterpoint improvisation, NIME, 2020.

Yan, Lustig, Vaderstel, & Duan, Part-invariant model for music generation and harmonization, ISMIR, 2018.



Application: Audio Source Separation
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RNN Summary
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• Recurrent Neural Networks (RNNs)

– Weight sharing over time

– Recurrent links to carry information infinitely long (in theory)

• Different kinds of recurrencies

– Hidden to hidden

– Output to hidden

• Different RNN architectures

– N to N, N to 1, 1 to N, N to M

• Back Propagation Through Time (BPTT)

– Vanishing and exploding gradients due to repeatedly compositing the same function

– Gradient clipping

• Long Short-Term Memory

– Linear self connections to remember information longer

– (Learnable) gated architecture to control information flow
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