Topic 9

Deep Learning for Audio

Some figures are copied from the following books

- LWLS Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, Thomas B. Schön, *Machine Learning: A First Course for Engineers and Scientists*, Cambridge University Press, 2022.
- **GBC** Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning, MIT Press.
- **Mitchell** Tom M. Mitchell, Machine Learning, McGraw-Hill Education, 1997.

Audio Classification Tasks

- Music genre, mood, artist, composer, instrument classification
- Auto tagging, i.e., labeling music with words
- Chord recognition
- Acoustic event detection
- Speech/speaker recognition

General flowchart

Features that we have studied

- Raw input: audio waveform or spectrogram
- Feature output:
 - RMS, Zero Crossing Rate
 - Spectral centroid, spread, skewness, kurtosis, flatness, irregularity, rolloff, flux, etc.
 - Harmonic features
 - MFCC, LPC, PLP, etc.
- Hand-crafted / engineered / pre-defined
- Hard to decide what features to use for a task
- Question: can computers learn features directly from data?

Feature / Representation Learning

- Learn a transformation from "raw" inputs to a representation that can be effectively exploited in a task
 Learn a transformation Training data
 Test data
 Feature learning
- Automatic / does not rely on human knowledge
- Target for a specific task

Test data

features

Methods Viewed as Feature Learning

- Principal Component Analysis (PCA)
 - Learns a linear transformation, where rows of *W* are the orthogonal directions of greatest variance in the training data f(x) = Wx + b
- Dictionary Learning (e.g., NMF)
 - Learns a linear transformation, where the input, transformation matrix, and activation matrix (i.e., features), are all non-negative x = Wh(X = WH)

Are linear features good enough?

- Probably not...
- The world is complex and often highly nonlinear.

Can you define a linear transformation on the images to discriminate "2"s from non-"2"s?

$$f(\mathbf{x}) = \sum_{i} w_i x_i + b$$

where x is a vector of pixel values of an image.

Are these features highly nonlinear...

...to the waveform or spectrogram?

- RMS, ZCR
- Spectral centroid, spread, skewness, kurtosis, flatness, flux
- Harmonic features
- Cepstrum: $|\mathcal{F}^{-1}\{\log|\mathcal{F}\{x(t)\}|^2\}|^2$
- MFCC
- LPC

Can we learn highly non-linear features?

Deep neural networks!

Biological Motivation

- Human brain: a densely interconnected network
 - ~10^11 neurons
 - Each neuron connects to $\sim 10^{4}$ other neurons
 - Two states of neuron activity: excited vs. inhibited
 - Neuron switching speed: ~1kHz
 - CPU clock frequency: GHz
 - Yet many tasks (e.g., face recognition) can be completed within 0.1 s
- This suggests
 - Highly parallel processing
 - Distributed representations

Biological Analogy

ECE 477 - Computer Audition, Zhiyao Duan 2023

History of Neural Networks

- 1943 first neural network computing model by McCulloch and Pitts
- 1958 Perceptron by Rosenblatt
- 1960's a big wave
- 1969 Minsky & Papert's book "Perceptrons"
- 1970's "winter" of neural networks
- 1975 Backpropagation algorithm by Werbos
- 1980's another big wave
- 1990's overtaken by SVM proposed in 1993 by Vapnik
- 2006 a fast learning algorithm for training deep belief networks by Hinton
- 2010's another big wave
- 2018 Turing Award to Hinton, Bengio & LeCun
- 2022 ChatGPT!
- Present continue to transform various domains

Perceptron

ECE 477 - Computer Audition, Zhiyao Duan 2023

Nonlinear Activation Functions

1

• Step function

 $output = sign(\mathbf{w}^T \mathbf{x} + b)$

- Note: previously we used {-1,1} for sign function for perceptron, which is equivalent
- Sigmoid function

$$output = \sigma(\mathbf{w}^T \mathbf{x} + b) = \frac{1}{1 + e^{-(\mathbf{w}^T \mathbf{x} + b)}}$$

• Rectified Linear Unit (ReLU) $output = \max\{0, w^T x + b\}$

Limitations of 1-layer Nets

- Only express linearly separable cases
 - For example, they are good as logic operators "AND", "NOT", and "OR"

But, we can combine them!

ECE 477 - Computer Audition, Zhiyao Duan 2023

2-layer Nets

ECE 477 - Computer Audition, Zhiyao Duan 2023

Matrix Notation

$$f(\boldsymbol{x}) = \sigma\left(\sum_{j} w_{j}^{(2)} \sigma\left(\sum_{i} w_{ij}^{(1)} x_{i} + b_{j}^{(1)}\right) + b^{(2)}\right)$$

$$f(\boldsymbol{x}) = \sigma \left(\boldsymbol{W}_{2}^{T} \boldsymbol{\sigma} \left(\boldsymbol{W}_{1}^{T} \boldsymbol{x} + \boldsymbol{b}_{1} \right) + \boldsymbol{b}_{2} \right)$$

where

$$W_{1} = \left[w_{ij}^{(1)}\right]_{d \times l_{1}}, \boldsymbol{b}_{1} = \left[b_{j}^{(1)}\right]_{l_{1} \times 1}$$
$$W_{2} = \left[w_{jk}^{(2)}\right]_{l_{1} \times l_{2}}, \boldsymbol{b}_{2} = b^{(2)}$$

- What does $W_1^T x$ compute?
 - Inner products between columns of W_1 and x
 - Columns of W_1 are "receptors" or "filters"
 - $W_1^T x$ are their responses to input

3-layer Nets

$$f(\mathbf{x}) = \sigma\left(\sum_{k} w_{k}^{(3)} h_{k}^{(2)} + b^{(3)}\right) = \sigma\left(\sum_{k} w_{k}^{(3)} \sigma\left(\sum_{j} w_{jk}^{(2)} h_{j}^{(1)} + b_{k}^{(2)}\right) + b^{(3)}\right) = \sigma\left(\sum_{k} w_{k}^{(3)} \sigma\left(\sum_{j} w_{jk}^{(2)} \sigma\left(\sum_{i} w_{ij}^{(1)} x_{i} + b_{j}^{(1)}\right) + b^{(2)}_{k}\right) + b^{(3)}\right)$$

Matrix Notation

 $f(\boldsymbol{x}) = \sigma \big(\boldsymbol{W}_3^T \boldsymbol{\sigma} \big(\boldsymbol{W}_2^T \boldsymbol{\sigma} \big(\boldsymbol{W}_1^T \boldsymbol{x} + \boldsymbol{b}_1 \big) + \boldsymbol{b}_2 \big) + \boldsymbol{b}_3 \big)$

ECE 477 - Computer Audition, Zhiyao Duan 2023

Richer Representations with More Layers

- 1-layer nets (e.g., perceptron) only model linear hyperplanes
- 2-layer nets can approximate any continuous function, given enough hidden nodes
- >=3-layer nets can do so with fewer nodes and weights
- Nonlinear activation is key!
 - Multiple layers of linear activations is still linear!

Example Application

(Fig. 6.5 in LWLS, from MNIST dataset) 70,000 grayscale images (28*28) from 10 classes

- One-layer MLP (i.e., logistic regression)
 - Input: 28*28=784-d vectors
 - Output layer size: 10 nodes
 - #parameters: 784*10+10 = 7,850

- Two-layer MLP
 - Input: 28*28=784-d vectors
 - Hidden layer size: 200 nodes
 - Output layer size: 10 nodes
 - #parameters for hidden layer: 784*200+200
 - #parameters for output layer: 200*10+10
 - #Total parameters = 159,010

Properties of NNs

- Large capacity: able to learn complex relations between input and output
- Support various data formats: continuous, discrete, categorical (needs to be encoded into numeric)
- Robust to some level of noise in training data
- Inference (i.e., making predictions on test examples) is fast
- Data hungry
- Training is slow
- Lack of mathematical analysis and difficult to interpret

How to learn the weights?

- Given training data input and label pairs $\{x^{(i)}, y^{(i)}\}_{i=1}^{N}$
- Update network weights to minimize the difference (error) between f(x⁽ⁱ⁾) and y⁽ⁱ⁾
 - Calculate derivative of error w.r.t. weights
 - Gradient descent to update weights
 - Backpropagation algorithm: recursive computation of these gradients
- See derivation on white board

Backpropagation Recap

- Assume we use sigmoid activation and the squared error loss
 - We can also use other activations, e.g., ReLU
 - We can also use other losses, e.g., cross entropy
- Then the loss on the entire training set is

$$E(\boldsymbol{\theta}) = \frac{1}{2N} \sum_{i=1}^{N} \left(y^{(i)} - \hat{y}^{(i)} \right)^2 = \frac{1}{2N} \sum_{i=1}^{N} \left(y^{(i)} - f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}) \right)^2$$

where θ denotes network parameters, i.e., network weights

- We compute gradient $\nabla_{\theta} E(\theta)$ (called the true gradient, versus stochastic gradient computed on a subset of data), and then update θ along the negative gradient direction iteratively
- The computation of $\nabla_{\theta} E(\theta)$ is recursive, backward from the last layer to the first layer, leveraging the layer-wise structure of the network
- The computation also requires node outputs at each layer, which are computed in a forward pass

Forward Pass In Matrix Notation

- Start from input $X_{N \times d} = [x^{(1)}, x^{(2)}, \dots, x^{(N)}]^T$ corresponding to all N points
- Compute first hidden layer net input Z_1 $[Z_1]_{N \times l_1} = [XW_1]_{N \times l_1} + [repmat(b_1^T)]_{N \times l_1}$
- Compute first hidden layer output *H*₁

$$[\boldsymbol{H}_1]_{N \times l_1} = \boldsymbol{\sigma}(\boldsymbol{Z}_1)$$

- Compute second hidden layer net input Z_2 $[Z_2]_{N \times l_2} = [H_1 W_2]_{N \times l_2} + [repmat(b_2^T)]_{N \times l_2}$
- Compute second hidden layer output *H*₂

$$[\bar{\boldsymbol{H}}_2]_{N\times l_2} = \boldsymbol{\sigma}(\boldsymbol{Z}_2)$$

-
- Compute final output \hat{y} , a vector corresponding to all N points

Backward Pass in Matrix Notation

- Mean squared error computed on all data: $E(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (y^{(i)} \hat{y}^{(i)})^2 = \frac{1}{2N} (y \hat{y})^T (y \hat{y})$
- Compute gradients w.r.t. weights in the output layer (the *M*-th layer)

$$\left\| \frac{\partial E}{\partial \widehat{\mathbf{y}}} \right\|_{N \times 1} = \frac{1}{N} (\widehat{\mathbf{y}} - \mathbf{y})$$
$$[\sigma'(\mathbf{z}_M)]_{N \times 1} = \widehat{\mathbf{y}} \odot (1 - \widehat{\mathbf{y}})$$

$$\begin{bmatrix} \frac{\partial E}{\partial \boldsymbol{w}_M} \end{bmatrix}_{l_{M-1} \times 1} = \begin{bmatrix} \frac{\partial \boldsymbol{z}_M}{\partial \boldsymbol{w}_M} \end{bmatrix}_{l_{m-1} \times N} \cdot \begin{bmatrix} \begin{bmatrix} \frac{\partial E}{\partial \hat{\boldsymbol{y}}} \end{bmatrix}_{N \times 1} \boldsymbol{\bigcirc} [\sigma'(\boldsymbol{z}_M)]_{N \times 1} \end{bmatrix}$$
$$\boldsymbol{H}_{M-1}^T$$

$$\frac{\partial E}{\partial b_M} = \left[\frac{\partial \mathbf{z}_M}{\partial b_M}\right]_{1 \times N} \cdot \left[\frac{\partial E}{\partial \widehat{\mathbf{y}}}\right]_{N \times 1} \odot [\sigma'(\mathbf{z}_M)]_{N \times 1}\right]_{1^T}$$

ECE 477 - Computer Audition, Zhiyao Duan 2023

Backward Pass in Matrix Notation

• Compute gradients w.r.t. weights in the (m - 1)-th layer recursively

$$\begin{bmatrix} \frac{\partial E}{\partial H_{m-1}} \end{bmatrix}_{N \times l_{m-1}} = \begin{bmatrix} \frac{\partial E}{\partial H_m} \end{bmatrix}_{N \times l_m} \odot [\sigma'(\mathbf{Z}_m)]_{N \times l_m} \cdot [\mathbf{W}_m^T]_{l_m \times l_{m-1}}$$
$$\begin{bmatrix} \frac{\partial E}{\partial W_{m-1}} \end{bmatrix}_{l_{m-2} \times l_{m-1}} = [\mathbf{H}_{m-2}^T]_{l_{m-2} \times N} \cdot \left[\begin{bmatrix} \frac{\partial E}{\partial H_{m-1}} \end{bmatrix}_{N \times l_{m-1}} \odot [\sigma'(\mathbf{Z}_{m-1})]_{N \times l_{m-1}} \right]$$

$$\left[\frac{\partial E}{\partial \boldsymbol{b}_{m-1}}\right]_{l_{m-1}\times 1} = \left[\left[\frac{\partial E}{\partial \boldsymbol{H}_{m-1}}\right]_{N\times l_{m-1}} \odot [\sigma'(\boldsymbol{Z}_{m-1})]_{N\times l_{m-1}}\right]^T \cdot \mathbf{1}_{N\times 1}$$

ECE 477 - Computer Audition, Zhiyao Duan 2023

Problems of BP for Deep Networks

- Vanishing gradient problem
 - Gradients vanishes when they are propagated back to early layers, hence their weights are hard to adjust
 - Sigmoid activation \rightarrow ReLU activation

- Many local minima
 - Which will trap gradient decent methods
 - In practice, local minima are pretty good

MLP Summary

- (Artificial) neural networks are inspired by the biological neural networks
 - Parallel processing + distributed representation
- Feedforward neural networks use a layer-wise structure
 - Full connection between adjacent layers
 - Linear mapping + nonlinear activation
- Representation power
 - 1-layer NNs are just perceptron or logistic regression
 - 2-layer NNs can represent (almost) any continuous function, with sufficient hidden nodes
 - >= 3-layer NNs can do so with much fewer nodes
- Gradient descent to update network weights using training data
- Backpropagation algorithm to recursively compute gradients
 - Vanishing gradient issues for sigmoid activation

MLP → Convolutional Neural Networks (CNN)

- Fully connected between adjacent layers
 - Many parameters \rightarrow prone to overfitting
 - Some connections may be unnecessary
 - Not robust to shifts of input

ECE 477 - Computer Audition, Zhiyao Duan 2023

Full Connection → Sparse Connection

- Only keep local connections
 - Assuming nearby inputs have stronger correlations

Receptive field of a neuron

ECE 477 - Computer Audition, Zhiyao Duan 2023

Receptive Field at a Deeper Layer

• With sparse connections, nodes at a deeper layer can still have a large receptive field, and global patterns could still be captured

(Fig. 9.4 in GBC)

Independent Weights → Shared Weights

 Assuming neurons at different locations process their inputs in the same way, we can let them share weights

(Adapted from Fig. 9.3 in GBC)

Much Fewer Parameters!

$$\begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \\ z_5 \end{bmatrix} = \begin{bmatrix} w_{11} & \cdots & w_{51} \\ \vdots & \vdots & \vdots \\ w_{15} & \cdots & w_{55} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}$$

• 5*5+5 parameters (biases are omitted in figures)

$$\begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \\ z_5 \end{bmatrix} = \begin{bmatrix} w_2 & w_3 & 0 & 0 & 0 \\ w_1 & w_2 & w_3 & 0 & 0 \\ 0 & w_1 & w_2 & w_3 & 0 \\ 0 & 0 & w_1 & w_2 & w_3 \\ 0 & 0 & 0 & w_1 & w_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}$$

• 3+1 parameters

$$z_n = \sum_m w_m x_{m+n-2}$$

ECE 477 - Computer Audition, Zhiyao Duan 2023

This is basically convolution

• Continuous-time signals

$$z(t) = (x * w)(t) = \int x(\tau)w(t-\tau)d\tau = \int x(t-\tau)w(\tau)d\tau = (w * x)(t)$$

• Discrete-time signals

• Cross convolution: no flipping, but is the convolution referred to in deep learning

$$z[n] = \sum_{m} x[m]w[n+m]$$

ECE 477 - Computer Audition, Zhiyao Duan 2023

2D Convolution

2D Convolution

(Fig. 9.1 in GBC)

ECE 477 - Computer Audition, Zhiyao Duan 2023

2D Convolution Example

- Vertical edge detection using a 1*2 kernel [-1, 1]
- (Cross-)convolving a gray-scale image with this kernel computes the intensity difference between two horizontally adjacent pixels

(Fig. 9.6 in GBC)

Convolution with Strides

• Downsampling after convolution

(Fig. 9.12 in GBC)

2D Convolution with Strides

Figure 6.12: A convolutional layer with stride 2 and filter size 3×3 . (Figure from LWLS)

ECE 477 - Computer Audition, Zhiyao Duan 2023

Pooling

- Pooling is another way to reduce the size of feature maps
 - Max pooling: taking the max \rightarrow result is invariant to small shifts
 - Average pooling: taking the average
- No trainable parameters

ECE 477 - Computer Audition, Zhiyao Duan 2023

Nonlinear Activation

- As discussed before, convolution is a linear operation
- We need a nonlinear activation after convolution to build deep nets
- Rectified Linear Unit (ReLU) and Leaky ReLU is most used

Multiple Channels

- Convolution with a single filter (kernel) detects only one pattern (e.g., vertical edges)
- Use multiple filters to detect more patterns
 - Each filter results in one feature map
 - Multiple filter result in multiple feature maps, stacked as channels
 - When input is 2D with multiple channels, each filter becomes a 3D tensor

ECE 477 - Computer Audition, Zhiyao Duan 2023

Convolution Layer

(Fig. 9.7 in GBC)

Typical Output Layer

- After a stack of convolutional layers, a few fully connected layers often follow to give the output
 - The last convolutional layer's feature map is reshaped to a vector
- *M*-Class Classification:
 - Use *M* output nodes
 - Softmax activation (probability): $\hat{y}_i = \frac{e^{h_i}}{\sum_{j=0}^{M-1} e^{h_j}}, \forall i = 0, \dots, M-1$

- Cross entropy loss:
$$L_{CE} = -\sum_{i=1}^{N} y_i \log(\hat{y}_i)$$

(Figure from https://towardsdatascience.com/cross-entropy-loss-function-f38c4ec8643e)

ECE 477 - Computer Audition, Zhiyao Duan 2023

Full CNN Architecture

• *M*-class classification on single-channel 2D input

(Fig. 6.14 in LWLS)

Full CNN Architecture

• Input: 28*28=784-d gray-scale (i.e., 1-channel) hand-written digits

	Convolutional layers			Dense layers	
	Layer 1	Layer 2	Layer 3	Layer 4	Layer 5
Number of filters/output channels	4	8	12	-	_
Filter rows and columns	(5×5)	(5×5)	(4×4)	_	_
Stride	1	2	2	_	_
Number of hidden units	3 1 3 6	1 568	588	200	10
Number of parameters	104	808	1 548	117 800	2010
(including offset vector)					

(Example 6.3 in LWLS)

784*4=3136 784/4*8=1568 784/4/4*12=588

ECE 477 - Computer Audition, Zhiyao Duan 2023

Network Training

- Define a loss function
 - Classification: cross entropy for softmax output
 - Regression: mean squared error
- Stochastic gradient descent
 - Randomly picking training samples to form a mini-batch
 - Compute gradient of loss function w.r.t. weights through backpropagation
 - Update weights along negative gradient with some (adaptive) learning rate
- Different optimizers
 - Adam: adaptive moment estimation uses running averages on gradients and second order moments
 - Adagrad: adaptive gradient uses different learning rates at different iterations
 - RMSprop: root mean square propagation exponentially weighted average of squared gradient to adapt learning rate

Backpropagation for CNN

- BP through nonlinear activation
 - Same as before
- BP through pooling
 - Average pooling: gradient is equally distributed to all inputs
 - Max pooling: gradient is solely assigned to the max input

(Figures from https://lanstonchu.wordpress.com/2018/09/01/convolutional-neural-network-cnn-backward-propagation-of-the-pooling-layers/)

Backpropagation for CNN

- Convolution is a linear operation between the input tensor and a kernel, and it results in an output tensor
- BP through convolution to layer input
 - Each element of the input tensor affects multiple channels of the output tensor through different filters
- BP through convolution to layer weights
 - Each weight affects all elements of one output channel through all channels of previous layer's output

(Adapted from Fig. 6.14 in LWLS)

CNNs for Different Types of Input

	Single-Channel	Multi-Channel		
1-D	Audio waveforms	Skeleton animation data: Each channel represents one angle of one joint		
2-D	Audio spectrograms; gray-scale images	Color images: RGB channels		
3-D	Volumetric data, e.g., CT scans	Color video data		
(Adapted from Table 9.1 in GBC)				

1D CNN for Audio Generation

- WaveNet [van den Oord et al., 2016] \bullet
- Dilated causal convolution lacksquare

Input

https://www.deepmind.com/blog/wavenet-a-generative-model-for-raw-audio

(speech)

Free generation (piano music)

ECE 477 - Computer Audition, Zhiyao Duan 2023

2D CNN for Image Classification

• AlexNet [Krizhevsky et al., 2012]

Filter Visualization of AlexNet

- Learned filters of the 1st convolutional layer
 - 96 filters with size of 11*11*3

[Krizhevsky et al., 2012]

Transfer Learning with Pretrained Networks

- First layers (features extractors) learned from one task (e.g., natural image classification) can be useful for another relevant task (e.g., medical image classification)
- Use a pre-trained model (on big data tasks) to build a new model (for small data tasks)
 - Remove last few layers (e.g., the last dense layer), which are usually task-specific
 - Use the remaining layers to build a new network by adding a couple of layers for the new task
 - Train new layers (or fine tune the entire network) on the new task

ImageNet

• 1.3 M images from 1000 classes

CNN for Audio Applications

- Apply 1D convolution on audio samples (WaveNet)
- Audio \rightarrow Magnitude spectrogram \rightarrow Apply 2D convolution

Applications :

- Classification/Identification: sound, genre, instrument, speaker, etc.
- Source Separation: mask prediction
- Generation: predict the next audio sample

Disadvantages:

- In images, neighboring pixels belong to the same object, not the same for spectrograms
- CNNs are applied in magnitude, and not phase
- CNNs cannot model long-term temporal information

CNN Summary

- Key properties of CNNs
 - Sparse (local) connection
 - Shared weights
 - Equivariance to translation
- Important components
 - Convolution
 - Pooling: max pooling, average pooling
 - Activation: ReLU
- Important concepts
 - Filter, receptive field, channel, tensor
- Applications
 - Classification, regression, generation
 - 1D, 2D, 3D
- Think: what problems/data are not appropriate for CNN?

MLP → Recurrent Neural Network (RNN)

- Model time series with MLP, e.g., predicting the next data point
 - Limited memory
 - Fixed window size L
 - Number of weights increases with L quickly
 - Predictions at different times are independent
- How to better model past information?

(Figure from Box and Jenkins, Time Series Analysis: Forecasting and Control, 1976)

ECE 477 - Computer Audition, Zhiyao Duan 2023

Make Network Recurrent

- Parameter sharing
 - Different positions use the same network
- Add recurrent links
 - Current computation affects future computation
 - Carry past information to the future
- Compared with 1D convolution
 - Both have weight sharing
 - Convolution has limited receptive field
 - Recurrency can carry information infinitely long (in theory)

Unfold Recurrency

(Fig. 10.2 in GBK)

 $h^{(t)}$ is affected all past input: $x^{(1)}, \dots, x^{(t)}$

Different Types of Recurrency

- RNNs that produce an output at each time step and have recurrent connections between hidden units
- Take classification / labeling as example
- Forward propagation

Net input to hidden $a^{(t)} = b + Wh^{(t-1)} + Ux^{(t)},$ Nonlinear activation $h^{(t)} = \tanh(a^{(t)}),$ Linear output $o^{(t)} = c + Vh^{(t)},$ Softmax -> class prob. $\hat{y}^{(t)} = \operatorname{softmax}(o^{(t)}),$ Cross entropy loss: $L = -\sum_t \log\left(\left[\hat{y}^{(t)}\right]_{y^{(t)}}\right)$

Back Propagation Through Time (BPTT)

- Output (hence loss) at time t is affected by past inputs and hidden nodes through the recurrent links
- To perform gradient descent, gradients need to pass backwards through the recurrent links
- Each update of weights requires
 - Forward computation of all hidden nodes and output nodes
 - Backpropagation of gradients
 - − Both computations are sequential \rightarrow cannot be parallelized \rightarrow slow to train

BPTT Sketch

- Same as regular backpropagation → repeatedly apply chain rule
- For W_{hy}, we propagate along the vertical links

$$\frac{\partial L}{\partial W_{hy}} = \sum_{i=0}^{t} \frac{\partial L_i}{\partial W_{hy}}$$
$$\frac{\partial L_t}{\partial W_{hy}} = \frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{W_{hy}}$$
$$\hat{y}_t = W_{hy} h_t$$
Easy to calculate

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2023

BPTT Sketch

- Same as regular backpropagation → repeatedly apply chain rule
- For W_{hh} and W_{xh} , we also propagate along the horizontal (i.e., recurrent) links

$$\frac{\partial L}{\partial W_{hh}} = \sum_{i=0}^{t} \frac{\partial L_i}{\partial W_{hh}}$$
$$\frac{\partial L_t}{\partial W_{hh}} = \frac{\partial L_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial h_t} \frac{\partial h_t}{\partial W_{hh}}$$
$$h_t = tanh(W_{hh}h_{t-1} + W_{xh}x_t)$$
It also depends on W_{hh}

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2023

Different Types of Recurrency

- RNNs that produce an output at each time step and have recurrent connections only from the output at one time step to the hidden units at the next time step
- Carry less information from past, because
 - Output nodes typically have a lower dimensionality than hidden nodes
 - Output nodes are strongly influenced by ground-truth y during training

Teacher Forcing

- Training can be parallelized by teaching forcing for RNNs that only have recurrent links from output to hidden
- It essentially only trains network to make 1-step predictions
- During inference, $y^{(t-1)}$ is not available for predicting $y^{(t)}$, causing mismatch from training
 - Scheduled sampling: mix teacher-forced inputs and freerun inputs during training with a ratio that gradually decreases

ECE 477 - Computer Audition, Zhiyao Duan 2023

Bidirectional RNN

- RNNs introduced so far are causal, i.e., the output at the current time step is only affected by the current input and past inputs
- In some applications (e.g., filling a missing word in a sentence, speech recognition), output has dependencies on inputs from both sides
- Let's use two RNNs, one for each direction
- Their hidden values work together to give output

RNN with a Single Output

- Some tasks only require a single output from the input sequence
 - E.g., phoneme classification, sound event recognition

(Fig. 10.5 in GBK) ECE 477 - Computer Audition, Zhiyao Duan 2023

RNN with Context Conditioning

- Output a sequence from a conditioning vector
 - E.g., laughter sound generation, conditioned on the type of laughter
 - E.g., image captioning, conditioned on image
 - E.g., emotional talking face generation, conditioned on emotion label
- This conditioning vector can be input to the network
 - As extra input at each time step (right figure)
 - As the initial state $h^{(0)}$
 - Both

ECE 477 - Computer Audition, Zhiyao Duan 2023

Encoder-Decoder Sequence-to-Sequence RNNs

- Sometimes the input and output sequences are of different length
 - E.g., machine translation from English to Chinese
 - E.g., audio captioning

- Encoder is an RNN with a single output
- Decoder is an RNN with context conditioning

(Fig. 10.12 in GBK)

Deep RNNs

- RNNs we introduced so far have only one hidden layer
- There are many ways to make them deeper, but a common way is to stack RNNs

ECE 477 - Computer Audition, Zhiyao Duan 2023
Vanishing & Exploding Gradients

- Recurrency applies the same function repeatedly, and will exponentially diminish or boost certain effects
- Look at linear recurrency as an example

$$h^{(t)} = Wh^{(t-1)} = W^t h^{(0)}$$

• Let *W* have eigenvalue decomposition

 $W = Q\Lambda Q^{-1}$

• Then we have

$$\boldsymbol{h}^{(t)} = \boldsymbol{Q} \boldsymbol{\Lambda}^{\mathrm{t}} \boldsymbol{Q}^{-1} \boldsymbol{h}^{(0)}$$

- Eigenvalues are raised to the power of *t*!
 - If $h^{(0)}$ is aligned with an eigenvector that is greater than 1, then explode
 - If $h^{(0)}$ is aligned with an eigenvector that is smaller than 1, then vanish

Vanishing & Exploding Gradients

• Vanishing gradients are very common for RNNs

Darkness indicates the influence of input at time 1 Figure from [Graves, 2008]

• Exploding gradients also happen, and it damages the optimization very much

Gradient Clipping

- Too big gradients will make too big updates of network parameters
- Clip the norm of gradients *g* to *v*:

Improving Long-Term Dependency Modeling

- Temporal dependencies in data can be very long
 - E.g., music rhythmic structure is at the scale of seconds, where each second often contains 44100 samples (time domain) or ~100 frames (time-frequency domain)
- Influence of input vanishes exponentially over time steps
 - In practice, after ten steps, influence is already negligible
- Several ways to improve long-term dependency
 - Add skip connections through time: allows information to flow with fewer time steps
 - Add linear self-connections to hidden units, called leaky units, similar to running average: $\mu^{(t)} \leftarrow \alpha \mu^{(t-1)} + (1 - \alpha) v^{(t)}$. When α is close to 1, it allows hidden units to remember information for a long time.
 - Add gates to control information flow

Gated Architectures - LSTM

- Cell state (leaky unit) is the internal memory
- Three information gates perform delete/write/read operations on memory

Gated Architecture - GRU

- Gated Recurrent Unit (GRU)
 - A single gate to simultaneously control the forgetting factor and the updating operation of the state unit
 - Fewer parameters than LSTM
 - Similar performance

Update gate Reset gate

$$egin{aligned} & z_t = \sigma_g(W_z x_t + U_z h_{t-1} + b_z) \ & \mathbf{e} & r_t = \sigma_g(W_r x_t + U_r h_{t-1} + b_r) \ & \hat{h}_t = \phi_h(W_h x_t + U_h(r_t \odot h_{t-1}) + b_h) \ & h_t = z_t \odot h_{t-1} + (1-z_t) \odot \hat{h}_t \end{aligned}$$

Output

(Figure from https://en.wikipedia.org/wiki/Gated_recurrent_unit)

Application: Music Generation

Benetatos, VanderStel, & Duan, BachDuet: A deep learning system for human-machine counterpoint improvisation, NIME, 2020.

Yan, Lustig, Vaderstel, & Duan, Part-invariant model for music generation and harmonization, ISMIR, 2018.

ECE 477 - Computer Audition, Zhiyao Duan 2023

Application: Audio Source Separation

Predicted Mask

N timesteps

ECE 208/408 - The Art of Machine Learning, Zhiyao Duan 2023

RNN Summary

- Recurrent Neural Networks (RNNs)
 - Weight sharing over time
 - Recurrent links to carry information infinitely long (in theory)
- Different kinds of recurrencies
 - Hidden to hidden
 - Output to hidden
- Different RNN architectures
 - N to N, N to 1, 1 to N, N to M
- Back Propagation Through Time (BPTT)
 - Vanishing and exploding gradients due to repeatedly compositing the same function
 - Gradient clipping
- Long Short-Term Memory
 - Linear self connections to remember information longer
 - (Learnable) gated architecture to control information flow